RAS Chemistry & Material ScienceРадиохимия Radiochemistry

  • ISSN (Print) 0033-8311
  • ISSN (Online) 3034-5693

Cesium-137 Extraction from Nitric Acid Media with Calix[4]arene-Crown-6 Ether Solutions in Bis(tetrafluoropropyl) Carbonate

PII
S30345693S0033831125020038-1
DOI
10.7868/S3034569325020038
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 67 / Issue number 2
Pages
119-134
Abstract
The physicochemical and extraction properties of calixarene crown ethers: 1,3-alt-bis(octyloxy)calix[4]arene-crown-6 (II) and its derivatives with α-phenylene (I), methylenepropoxy (IV) and methylene(2,2,3,3-tetrafluoropropoxy) (III) substituents in the crown ether ring, were studied. Solutions of compound II in bis(2,2,3,3-tetrafluoropropyl) carbonate (BK-1) effectively extract cesium from 3 mol/L nitric acid already at a concentration of 0.001 mol/L. The introduction of substituents into the crown ether ring significantly reduces the efficiency of cesium extraction, but increases the solubility of calixarene crown ethers in bis(2,2,3,3-tetrafluoropropyl) carbonate. The data on the solubility of calixarene crown ethers in water and 3 mol/L nitric acid, the distribution between the organic and aqueous phases, and the rate of interaction with nitric acid were obtained. Calixarene crown ether I with an α-phenylene substituent reacts with 3 mol/L nitric acid approximately 2 times faster than dibenzo-21-crown-7. The other calixarene crown ethers studied do not react with nitric acid under the similar conditions. Quantum chemical modeling, including optimization of the structure geometry and calculation of vibrational frequencies, was performed for the molecules of calixarene crown ethers, DB21C7 and their complexes with the cesium cation. The calculated ΔG values for the complexation of ligands with the cesium cation correlate well with the experimental lgD (except for compound III with a fluorinated substituent). Solutions of calixarene crown ethers in bis(2,2,3,3-tetrafluoropropyl) carbonate exhibit selectivity for cesium and do not extract Eu and Am from nitric acid media.
Keywords
экстракция цезий-137 каликс[4]арен-краун-6 эфиры бис(2,2,3,3-тетрафторпропил) карбонат растворимость и межфазное распределение экстрагентов взаимодействие с азотной кислотой квантово-химическое моделирование
Date of publication
26.02.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Стратегия развития ядерной энергетики России. M.: Pocarow, 2023. 64 с.
  2. 2. Лозунов М. В., Ворошилов Ю. А., Бабани В. А., Скобцов А. С. // Радиохимия. 2020. Т. 62. № 6. С. 463.
  3. 3. Grüner B., Rais J., Selucky P., Lukanikova M. // Boron Science: New Technologies and Applications / Ed. N.S. Hosmane. CRC, 2016. P. 463.
  4. 4. Ворошилов Ю. А., Лозунов М. В., Смольвицкий К. В., Яковлев Н. Г. // Вопр. радиац. безопасности. 2013. № 2. P. 23.
  5. 5. Концесса А. М., Родин А. В., Ананьев А. В. // Радиохимия. 2023. Т. 65. № 4. С. 303–309.
  6. 6. Smirnov I.V., Karavan M.D., Kauf E.V., Tkachenko L.I., Timoshenko V.V., Brechalov A.A. et al. // Solvent Extr. Ion Exch. 2022. Vol. 40. N 7. P. 756.
  7. 7. Matei L., Bilbao T. // J. Radioanal. Nucl. Chem. 1989. Vol. 137. N 3. P. 183.
  8. 8. Ripon R.I., Begum Z.A., Rahman I.M.M. // Microchem. J. 2024. Vol. 199. Article 110161.
  9. 9. Ungaro R., Casnati A., Ugozzoli F., Pochini A., Dozol J.-F., Hill C., Rouquette H. // Angew. Chem. Int. Ed. Engl. 1994. Vol. 33. P. 1506.
  10. 10. Roach B.D., Neil W.J., Duncan N.C., Laetitia H. // Solvent Extr. Ion Exch. 2014. Vol. 33. N 2. P. 134.
  11. 11. Simonnet M., Miyazaki Y., Suzuki S., Yaita V. // Solvent Extr. Ion Exch. 2019. Vol. 37. P. 81.
  12. 12. Wang J., Zhuang S. // Nucl. Eng. Technol. 2020. Vol. 52. N 2. P. 328.
  13. 13. Kumar V., Sharma J.N., Achuthan P.V., Hubli R.C. // J. Radioanal. Nucl. Chem. 2014. Vol. 299. P. 1547.
  14. 14. Khan P.N., Pahan S., Sengupta A., Tessy V., Singhadeh A.K., Ali S.M. // J. Mol. Liq. 2024. Vol. 397. Article 124064.
  15. 15. Jagasia P., Mohapatra P.K., Dhami P.S., Patil A.B., Adya V.C., Sengupta A. et al. // J. Radioanal. Nucl. Chem. 2014. Vol. 302. N 2. P. 1087.
  16. 16. Wang J., Chen J., Shan J. // Solvent Extr. Ion Exch. 2015. Vol. 33. P. 249.
  17. 17. Zhang A., Hu Q. // Sep. Sci. Technol. 2017. Vol. 52. N 10. P. 1670.
  18. 18. Patra K., Sengupta A., Mishra R.K., Mittal V.K., Valsala T.P., Kaushik C.P. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. N 3. P. 1473.
  19. 19. Babain V., Alyapyshev M., Ekberg C., Todd T. // Solvent Extr. Ion Exch. 2023. Vol. 41. N 3. P. 253.
  20. 20. Percec V., Bera T.K., De B.B., Sarai Y., Smith J., Holerca M.N., Barboiu B. // J. Org. Chem. 2001. Vol. 66. P. 2104.
  21. 21. Adamo C., Barone V. // J. Chem. Phys. 1999. Vol. 110. N 13. P. 6158.
  22. 22. Weigend F., Ahriches R. // Phys. Chem. Chem. Phys. 2005. Vol. 7. P. 3297.
  23. 23. Leininger T., Nicklass A., Kuechle W., Stoll H., Dolg M., Bergner A. // Chem. Phys. Lett. 1996. Vol. 255. P. 274.
  24. 24. Caldeweyher E., Bannwarth C., Grimme S. // J. Chem. Phys. 2017. Vol. 147. Article 034112.
  25. 25. Barone V., Cassi M. // J. Phys. Chem. A. 1998. Vol. 102. N 11. P. 1995.
  26. 26. Chemcraft—graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. https://www.chemerafprog.com
  27. 27. Smirnov I.V., Stepanova E.S., Tyupina M.Y., Ivenskaya N.M., Zaripov S.R., Meshnina S.R. et al. // Macroheterocycles. 2017. Vol. 10. N 2. P. 196.
  28. 28. Sharma J.N., Kumar A., Kumar V., Pahan S., Janardanan C., Tessi V., Watial P.K. // Sep. Purif. Technol. 2014. Vol. 135. P. 176.
  29. 29. Jagasia P., Ansari S.A., Raut D.R., Dhami P.S., Gandhi P.M., Kumar A., Mohapatra P.K. // Sep. Purif. Technol. 2016. Vol. 170. P. 208.
  30. 30. Raut D.R., Mohapatra P.K., Choudhary M.K., Nayak S.K. // J. Membr. Sci. 2013. Vol. 429. P. 197.
  31. 31. Patra K., Sadhu B., Sengupta A., Patil C.B., Mishra R.K., Kaushik C.P. // RSC Adv. 2021. Vol. 11. P. 21323.
  32. 32. Jagasia P., Mohapatra P.K., Dhami P.S., Gandhi P.M., Watial P.K. // Sep. Sci. Technol. 2014. Vol. 49. P. 2151.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library